Temporal patterns (TRAPs) in ASR of noisy speech

نویسندگان

  • Hynek Hermansky
  • Sangita Sharma
چکیده

In this paper we study a new approach to processing temporal information for automatic speech recognition (ASR). Speci cally, we study the use of rather longtime TempoRAl Patterns (TRAPs) of spectral energies in place of the conventional spectral patterns for ASR. The proposed Neural TRAPs are found to yield significant amount of complementary information to that of the conventional spectral feature based ASR system. A combination of these two ASR systems is shown to result in improved robustness to several types of additive and convolutive environmental degradations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal Patterns ( Traps ) in Asr of Noisy

Phoenix, Arizona, USA, March 1999. TEMPORAL PATTERNS (TRAPS) IN ASR OF NOISY SPEECH Hynek Hermansky1;2 and Sangita Sharma1 1Oregon Graduate Institute of Science and Technology, Portland, Oregon , USA. 2International Computer Science Institute, Berkeley, California, USA. Email: hynek,[email protected] ABSTRACT In this paper we study a new approach to processing temporal information for automat...

متن کامل

TRAPS - classifiers of temporal patterns

The work proposes a radically di erent set of features for ASR where TempoRAl Patterns of spectral energies are used in place of the conventional spectral patterns. The approach has several inherent advantages, among them robustness to stationary or slowly varying disturbances.

متن کامل

Learning discriminative temporal patterns in speech: development of novel TRAPS-like classifiers

Motivated by the temporal processing properties of human hearing, researchers have explored various methods to incorporate temporal and contextual information in ASR systems. One such approach, TempoRAl PatternS (TRAPS), takes temporal processing to the extreme and analyzes the energy pattern over long periods of time (500 ms to 1000 ms) within separate critical bands of speech. In this paper w...

متن کامل

Traps - Classifiers of Temporal

TRAPS CLASSIFIERS OF TEMPORAL PATTERNS Hynek Hermansky1;2 Sangita Sharma1 1Oregon Graduate Institute of Science and Technology, Portland, Oregon , USA. 2International Computer Science Institute, Berkeley, California, USA. Email: hynek,[email protected] ABSTRACT The work proposes a radically di erent set of features for ASR where TempoRAl Patterns of spectral energies are used in place of the ...

متن کامل

Band-independent speech-event categ

Band-independent categories are investigated for feature estimation in ASR. These categories represent distinct speechevents manifested in frequency-localized temporal patterns of the speech signal. A universal, single estimator is proposed for estimating speech-event posterior probabilities using temporal patterns of critical-band energies for all the bands. The estimated posteriors are used a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999